Table of Contents

A guide for journalists ..2

Introduction ...3
 - Owners and operators
 - Safety and emergency planning
 - The role of the news media during an emergency

The benefits of nuclear power6

News media contacts and directions7
 - Southern Nuclear and Georgia Power
 - During an emergency
 - Federal, state and local agencies
 - Directions to Plant Vogtle Joint Information Center
 (Activated only in the event of a nuclear emergency at Plant Vogtle)

About Plant Vogtle..10
 - Who was Alvin W. Vogtle?
 - Plant facts and statistics

Plant Vogtle achievements ..13
 - Community service
 - Environmental commitment

Emergency planning ..15
 - Managing a nuclear plant emergency
 - In the event of an emergency
 - Kinds of emergencies
 - Emergency notification systems
 - Public protective actions

Nuclear physics ..18
 - The fission process
 - Controlling fission in a nuclear reactor
 - More about nuclear physics and fission

Nuclear Power Generation ...20
 - Reactor controls and operation
 - By-products of operation
 - Types of light water reactors
 - Accident prevention
 - Engineered safety systems

Used nuclear fuel ...26
 - Spent fuel pool
 - Dry cask storage

Radiation and health ...28

Maintaining safety and security29

Plant Vogtle units 3&4 ..30

Words to Know ..31
A guide for journalists

Covering the news related to nuclear power can be challenging for reporters. The nuclear power industry is one of the most highly regulated industries in America. And it's very complex. Southern Nuclear's Communications department developed this media guide for the Alvin W. Vogtle Electric Generating Plant to help journalists cover the many aspects related to the plant and to nuclear power in general.

We strive to give honest, straightforward answers to questions from the media about our company and Southern Company's nuclear power plants. And we pride ourselves on being available to the media when you need us. In fact, our media line is available 24 hours a day: 205-992-5395. After hours and on the weekends, a media relations representative always is on call and will call you back promptly.

This media guide is designed to provide quick, specific information about Plant Vogtle's two nuclear units, as well as helpful information on the benefits of nuclear power, safety and security, emergency planning, nuclear physics, nuclear fuel and other topics related to nuclear power generation. The illustrations and explanations will help you understand how certain components and systems work in a nuclear power plant. Many terms commonly used in the nuclear power industry are defined.

We hope this information will help you when you cover stories about Plant Vogtle or the nuclear power industry. Our company needs you, because you are a very important source of information to our customers and neighbors living near the plant. In the unlikely event of an emergency, your role in informing the public with timely, accurate information would be vital.

Please take time to read this media guide and call us with any questions you have. Tours of Plant Vogtle are available, and you are encouraged to set up an appointment to visit us.

Communications

Southern Nuclear
Owners and operators

Southern Nuclear, headquartered in Birmingham, Ala., operates Southern Company’s six nuclear units at three locations: the Alvin W. Vogtle Electric Generating Plant near Waynesboro, Ga.; the Edwin I. Hatch Nuclear Plant near Baxley, Ga.; and the Joseph M. Farley Nuclear Plant near Dothan, Ala. Plant Vogtle and Plant Hatch were built by and are co-owned by Georgia Power Company, Oglethorpe Power Corporation, Municipal Electric Authority of Georgia, and Dalton Utilities. Together, these two nuclear power plants generate approximately 20 percent of Georgia Power’s electricity. Plant Farley was built and is owned by Alabama Power, and the plant generates approximately 19 percent of Alabama Power’s electricity.

Southern Nuclear, Georgia Power and Alabama Power each are wholly owned subsidiaries of Atlanta-based Southern Company (NYSE: SO). Southern Company is America’s premier energy company, with 44,000 MW of generating capacity and 1,500 billion cubic feet of combined natural gas consumption and throughput volume serving 9 million electric and gas utility customers through its subsidiaries. The company provides clean, safe, reliable and affordable energy through electric utilities in four states, natural gas distribution utilities in seven states, a competitive generation company serving wholesale customers across America and a nationally recognized provider of customized energy solutions, as well as fiber optics and wireless communications. Southern Company brands are known for excellent customer service, high reliability and affordable prices that are below the national average. Through an industry-leading commitment to innovation, Southern Company and its subsidiaries are inventing America’s energy future by developing the full portfolio of energy resources, including carbon-free nuclear, 21st century coal, natural gas, renewables and energy efficiency, and creating new products and services for the benefit of customers. Southern Company has been named by the U.S. Department of Defense and G.I. Jobs magazine as a top military employer, recognized among the Top 50 Companies for Diversity by DiversityInc, listed by Black Enterprise magazine as one of the 40 Best Companies for Diversity and designated a Top Employer for Hispanics by Hispanic Network. The company has earned a National Award of Nuclear Science and History from the National Atomic Museum Foundation for its leadership and commitment.
to nuclear development and is continually ranked among the top utilities in Fortune’s annual World’s Most Admired Electric and Gas Utility rankings. Visit our website at www.southerncompany.com.

Georgia Power is the largest subsidiary of Southern Company, one of the nation’s largest generators of electricity. The company is an investor-owned, tax-paying utility, serving its 2.4 million customers in all but four of Georgia’s 159 counties. Visit Georgia Power’s website at www.georgiapower.com.

Oglethorpe Power Corporation is one of the nation’s largest power supply cooperatives with more than $8 billion in assets. The corporation provides wholesale electric power to 39 Electric Membership Corporations in Georgia, which, in turn, provide retail electric service to more than 4.1 million residents. For more information, visit the Oglethorpe Power website at www.opc.com.

The Municipal Electric Authority of Georgia (MEAG Power) is a public generation and transmission organization providing wholesale electric power to 49 Georgia communities, with over $700 million in annual electric sales and 10.3 million megawatt-hours of delivered energy in 2013. MEAG Power has assets of more than $7.3 billion, co-owns two nuclear and two coal-fired generating plants and is the sole owner of a combined cycle facility with a total capacity of 2,069 megawatts, and co-owns Georgia’s Integrated Transmission System. Visit MEAG Power’s website at www.meagpower.org.

Dalton Utilities has operated as a public utility since 1889 and provides potable water, electrical, natural gas and wastewater treatment services to approximately 65,000 customers in the City of Dalton and portions of Whitfield, Murray, Gordon, Catoosa and Floyd counties. In 2003, Dalton Utilities launched its OptiLink family of telecommunication services and now provides broadband, cable tv, telephone and internet services to area residents and businesses. Visit Dalton Utilities’ website at www.dutil.com.

Safety and emergency planning

Safety is the first priority in operating our nuclear plants. Safety was emphasized during plant design and construction, and safety continues to be emphasized daily in oversight of operations, training of employees, validation of monitoring instruments and controls, testing of safety systems, and communication between operators, utilities, system suppliers and regulators. In the unlikely event of an emergency at any of our nuclear plants, emergency plans would be implemented to protect the safety of the general public surrounding the plant.

The Plant Vogtle emergency plan specifies procedures for Southern Nuclear, Georgia Power, and county, state and federal governments in responding to an emergency and to the needs of the public. Southern Nuclear has overall responsibility for the plant’s emergency plan, which also involves the public and the news media.
The role of the news media during an emergency

The news media plays an important role in informing the public about nuclear power. That role becomes even more critical in the unlikely event of an emergency.

If an emergency occurred at Plant Vogtle, the Joint Information Center would be activated in Waynesboro, Ga., for the use of the news media. Southern Nuclear, Georgia Power, and county, state and federal officials responding to the emergency would disseminate information and hold joint news briefings there. The Joint Information Center is located at 636 Woodland Rd., Waynesboro, Ga., 30830. Phone numbers for key contacts and directions to the facility are listed in the section called “News Media Contacts and Directions.”

If you are assigned to cover events at Plant Vogtle, now or during the unlikely event of an emergency, it's important for you to develop basic understanding of nuclear safety systems, radiation and the emergency plans in place to protect the public.

JOINT INFORMATION CENTER (JIC)

636 Woodland Rd., Waynesboro, Georgia 30830
A licensed senior reactor operator explains control room operations to a reporter in the simulator during annual site media day.
The benefits of nuclear power

The benefits of clean nuclear power are many. First and foremost, nuclear power is a clean, safe, affordable and reliable source of electricity. Nuclear power provides 16 percent of Southern Company’s generation, and we have been operating nuclear plants safely and reliably for more than 40 years. Our nuclear energy facilities produce 76 percent of Alabama’s emission-free electricity and 91 percent in Georgia. We operate our facilities at high levels of reliability with an average three-year fleet capacity factor of 93.2 percent, exceeding the U.S. average of 91.2 percent for the years 2013-2015. Capacity factor means the percent of time the unit is available to provide power to the electrical grid. Nuclear power has a low production cost compared with other fuel sources. Uranium is used as nuclear fuel, and it has less price volatility than other fuel sources.

We support local and state economies.

Did you know that the average nuclear plant spends approximately $40 million annually in wages? In Alabama alone, more than $158 million of materials, services and fuel are purchased annually from more than 190 local companies. Also, nuclear plants pay approximately $16 million in state and local taxes.

We protect the environment.

Nuclear energy produces more clean-air energy than any other energy source. It provides 76 percent of Alabama’s emission-free electricity and 62 percent of all U.S. emission-free electricity. More than 33 million metric tons of carbon dioxide are prevented by Alabama’s nuclear facilities. This is equal to what would be released by more than 6.4 million passenger cars. That's more than all the cars registered in the state of Alabama!

We care about your safety.

Nuclear facilities are held to the highest of standards by the federal government and its inspectors. There are comprehensive plans in place – in partnership with local, state and federal agencies – that prepare for the unexpected and provide layer upon layer of redundant safety features.
We are the most reliable.

Nearly 100 nuclear facilities in the U.S. provide about 20 percent of all electricity in the country. These facilities generate electricity 24 hours a day, seven days a week.

Efficiency is the core!

One uranium fuel pellet is about the size of a fingertip and creates as much energy as one ton of coal or 17,000 cubic feet of natural gas. A typical large nuclear energy facility produces enough electricity for nearly 723,000 homes while using only 20 metric tons of uranium fuel each year.

On-call media relations representatives

Southern Nuclear
205-992-5395

Georgia Power
404-506-7676 or 800-282-1696

Plant Vogtle Energy Education Center
706-826-3630

Web sites
www.southernnuclear.com
www.georgiapower.com
facebook.com/southernnuclear
@southernnuclear

During an emergency

Plant Vogtle Joint Information Center (JIC)
(Activated only in the event of an emergency at the plant)
706-437-6022

Georgia Power Corporate Media Center
404-506-7676 or 800-282-1696

Plant Vogtle recorded information line with most current update
(Activated only in the event of an emergency at the plant)
888-847-1186
Contacts for federal, state and local agencies

Federal agencies

Nuclear Regulatory Commission
Public Affairs, Region II, Atlanta
opa2@nrc.gov or 404-562-4416 or 4417 (during business hours)
After hours, call the NRC Headquarters Operations Officer in Rockville, Md.: 301-816-5100
www.nrc.gov

Federal Emergency Management Agency
770-220-5200 (24 hours)
www.fema.gov

Savannah River Site/Department of Energy/Westinghouse
803-725-3333

State agencies

Georgia Emergency Management & Homeland Security Agency
Public Information Officer, Atlanta
404-635-7200 (24 hours) or 404-635-7000 (during business hours)
www.gema.ga.gov

South Carolina Emergency Management Division
803-737-8500

Local emergency management agencies

Burke County Emergency Management Agency
706-554-6651

Aiken County Emergency Management Agency
803-642-1623

Allendale County Emergency Management Agency
803-584-4081

Barnwell County Emergency Management Agency
803-259-7013
Plant Vogtle

Joint Information Center (JIC)

(WHERE MEDIA SHOULD GO IN AN EMERGENCY)

636 Woodland Rd., Waynesboro, Georgia 30830

Once this facility is activated, media calls should be directed to 706-437-6022.

Spokespersons from Southern Nuclear, Georgia Power, Georgia Emergency Management Agency, and the affected county, state and federal agencies responding to the event will be at the Joint Information Center to discuss their activities.

From Atlanta/Atlanta Airport

- At the traffic light next to Wal-Mart continue through light to next traffic light and turn right onto Georgia Highway 80/56.
- Travel approx. ¼ mile and turn left onto Woodland Road (2nd left from intersection).
- The Vogtle JIC will be on the left.

From Augusta/Bush Air Field

- Take U.S. Highway 25 south out of Augusta to Waynesboro.
- Follow directions above.
- Travel time is approximately one-half hour.

Note: Media personnel should use the front entrance.
About Plant Vogtle

Plant Vogtle sits on a 3,200-acre site along the Savannah River, in Burke County near Waynesboro, Ga., and approximately 34 miles southeast of Augusta, Ga. Similar to other electric generating plants, Plant Vogtle has large turbines and generators, a computerized control room, and a chemistry lab, and is connected to the electric grid through high-voltage switchyards. However, massive containment buildings – with thick walls of concrete and steel – house two 355-ton reactor vessels on huge concrete slabs. These concrete structures shield the environment from radiation. The 548-foot-high twin cooling towers can be seen for miles.

Approximately 900 people – engineers, mechanics, control room operators, lab technicians, instrument and control technicians, electricians, security officers and others – oversee the plant’s operations 24 hours a day, every day of the year. Full-time, on-site inspectors from the U.S. Nuclear Regulatory Commission monitor the plant to ensure it is maintained and operated safely, efficiently and in accordance with established nuclear operating procedures.

Who was Alvin W. Vogtle?

The plant is named for the late Alvin W. Vogtle, Jr., former chairman of the board of Southern Company, parent company of Southern Nuclear and Georgia Power. Vogtle first joined the Southern system as president of Southern Electric Generating in 1960 after serving as the company’s legal counsel at a Birmingham law firm. In 1962, he was named executive vice president of Alabama Power, and in 1965, he was named vice president of Southern Company and Southern Company Services. He became executive vice president of Southern Company in 1966, and in 1969, he was named as the fourth president of Southern Company, serving as the company’s chief executive until his retirement in 1983.

The former chairman led the utility during a time of unprecedented growth and economic challenges, including the energy crisis of the 1970s and a decade of inflation with historically high energy prices. He was recognized throughout the industry for his judgment and leadership abilities, serving on numerous business and civic boards. Vogtle was named Executive of the Year in 1981 by the National Management Association and Chief Executive of the Year for the electric utility industry in 1978 by Financial World Magazine.

Born in Birmingham, Ala., in 1918, Vogtle earned a Bachelor of Science degree from Auburn University. At the age of 23, he received a law degree from the University of Alabama. He achieved a distinguished military record during World War II. After flying more than 30 combat missions as a U.S. Army Air Corps pilot, Vogtle crashed in North Africa and became a German prisoner of war. During two years of captivity, he made five unsuccessful escape attempts. On his sixth try, he scaled a 15-foot-high barbed-wire fence and reached freedom in Switzerland. He was awarded the Purple Heart, and his service formed the basis for the 1963 movie, “The Great Escape.” Alvin W. Vogtle died in 1994.
Plant facts and statistics

Owners
Georgia Power Company 45.7%
Oglethorpe Power Company 30.0%
Municipal Electric Authority Of Georgia 22.7%
Dalton Utilities 1.6%

Operator
Southern Nuclear

Location
In Burke County on the Savannah River near Waynesboro, Ga., and approximately 34 miles southeast of Augusta, Ga.

Nearest City
Waynesboro, Georgia

Reactors
Type – Pressurized Water Reactor (PWR)
Rated capacity (size) – 1,215 megawatts per unit

Nuclear Steam Supply System (Reactor manufacturer):
Westinghouse Electric Company

Turbine Generator Manufacturer
General Electric Company

Engineer/Construction Firm:
Bechtel Corporation
Southern Company Services

Containment
Vertical cylindrical, post-tensioned concrete structure with a dome and a flat base. It houses the reactor, reactor coolant system and other Nuclear Steam Supply System (NSSS) components. The interior is lined with a carbon steel plate. Concrete shields the reactor and other NSSS components. The containment building is 140 feet in diameter and 226 feet high. There are two containment buildings, one for each reactor.

Construction Start Date
1974

Commercial Operation
Unit 1 - June 1987
Unit 2 - May 1989
Cost
$8.87 billion, including financing

Size of Site
3,150 acres

Employment
Approximately 900

Fuel (17x17 array)
Fuel assemblies: 193
Overall length of fuel assembly: approximately 14 feet
Fuel rods per assembly: 264

Control Rods
(Rod Cluster Control Assemblies – RCCAs)
Number of RCCAs: 53
Control rods per RCCA: 24
Absorber material composition: silver-ium-cadmium
Cladding: stainless steel

Emergency Power (Safety Related)
Diesel generators: 2 per unit
Rated capacity: 7 MW each
Four 125-volt DC buses per unit

Reactor Coolant System (RCS)
Four loops, each loop with a reactor coolant pump and steam generator.
Operates at a nominal pressure of 2,235 psig (pounds per square inch gauge).

Reactor Coolant Pumps
Four pumps, each 7,000 horsepower with 100,600 gallons per minute capacity. Operating Voltage: 13,800 volts.

Steam Generators
Four generators, each with 5,626 tubes made of stainless steel.

Circulating Water Systems (CWS)
The condenser is cooled by the circulating water system, which transfers heat to the cooling towers. Water comes from water wells or from the Savannah River.
Plant Vogtle achievements

In addition to major achievements such as setting safety and reliability records, Plant Vogtle employees set the standard for improving the quality of life in the local community.

Environmental commitment

Plant Vogtle has been a certified Wildlife Habitat Council site since 1993. More than 600 acres have been replanted with loblolly and native longleaf pine. Plant Vogtle also participates in bluebird nest monitoring and local environmental education programs.

The plant is located in a rural area that supports diverse wildlife. Plant Vogtle has management programs that enhance habitat for species such as bluebirds, wood ducks and wild turkey. Land management efforts at Plant Vogtle contributed to Southern Company’s certification as a member of the National Wild Turkey Federation Energy for Wildlife.

Plant Vogtle has entered into a Safe Harbor Agreement with the Georgia Department of Natural Resources for the red cockaded woodpecker, a federal endangered species. This Safe Harbor Agreement ensures that adequate habitat will be provided and managed properly for the red cockaded woodpecker.
Community service

Plant Vogtle employees strive to be good corporate citizens by giving back to the local community. Many employees volunteer numerous hours of personal time and contribute financially to charities, schools and organizations that help those in need.

For example, Southern Nuclear and Georgia Power employees at Plant Vogtle regularly:

- Give more than $100,000 to the United Way of the Central Savannah River Area.
- Participate in:
 - The American Cancer Society’s “Relay for Life”
 - Reading programs at the plant’s partner school, SGA Elementary
 - Educational outreach programs
 - The Martin Luther King, Jr. Day annual community project
 - Blood drives for Shepard Community Blood Center
 - Central Savannah River Area College Night
- And serve as members of:
 - The Citizens of Georgia Power, Vogtle Chapter
 - The Citizens of Georgia Power, Waynesboro Chapter
 - The United States military, both at home and abroad
Emergency planning

Comprehensive plans have been developed by Southern Nuclear and approved by the Nuclear Regulatory Commission and other oversight agencies for responding to an emergency at Plant Vogtle, in accordance with federal requirements. Southern Nuclear has overall responsibility for the Plant Vogtle Emergency Plan, which involves Southern Nuclear, Georgia Power and various county, state and federal agencies.

The emergency plan specifies the procedures, personnel and equipment which would be used to classify an emergency, to define and assign responsibilities, and to outline an effective course of action for safeguarding personnel, property and the general public.

These plans are updated regularly and maintained at all times. Drills and exercises are conducted annually to test these plans and to train and test personnel on following procedures correctly.

Managing a nuclear plant emergency

At Plant Vogtle, technical staff is on duty 24 hours a day, 365 days a year. These men and women are trained to recognize and correct plant problems before they become emergencies. If an emergency does occur, plant personnel are prepared to serve as the initial on-site emergency response organization. Depending on emergency severity, the on-site personnel would be supplemented and supported by additional Southern Nuclear and Georgia Power personnel.

In addition, emergency support is available from a variety of other organizations, including the U.S. Nuclear Regulatory Commission, the state of Georgia, the state of South Carolina, the U.S. Department of Energy, other electric utility companies, the Institute of Nuclear Power Operations, and the Nuclear Energy Institute.

Should an emergency occur, one of the first steps taken would be to notify off-site authorities such as the Georgia Emergency Management Agency, the South Carolina Emergency Management Division, the U.S. Nuclear Regulatory Commission, and local county officials. Communication would be maintained with these agencies to keep them fully aware of the emergency status, including on-site and off-site radiological information.

At the same time, employees would begin taking steps immediately to restore the plant to a safe condition, monitor and control radiation, and manage and coordinate all emergency activities. These activities take place in specially equipped facilities.

Information dissemination in the event of an emergency

In the event of an emergency at Plant Vogtle, a Joint Information Center (JIC) would be established to disseminate information to the news media. The Joint Information Center is located at a separate site near the plant, at 636 Woodland Rd., Waynesboro, Ga. All emergency information would be disseminated from the Joint Information Center, which would serve as a combined communication hub for Southern Nuclear, Georgia Power and the local county, state and federal agencies involved in responding to an emergency.
A Corporate Media Center would be established at Georgia Power’s Corporate Headquarters at 241 Ralph McGill Boulevard in Atlanta. The Corporate Media Center would serve as an initial information center until the Joint Information Center (JIC) nearer the plant site is activated.

The degree of activity at these and other off-site emergency facilities would depend on the severity of the emergency.

Kinds of emergencies

There are four classifications used to describe accident severity of nuclear power plant emergencies. From least severe to most severe, the emergency classifications are listed below.

1. **Notice of Unusual Event.** The least serious of the four NRC classifications. It means there is a minor problem at the plant. Because of strict federal regulations, many situations occur that qualify as unusual events. Unusual events pose no danger to the public. You will not need to take any actions unless directed to by state and local officials.

2. **Alert.** An event has occurred that could reduce the plant’s level of safety. There should be no danger to the public. County and state officials will be involved and prepared for any necessary response. You will not need to take any actions unless directed to by state and local officials.

3. **Site Area Emergency.** An event has occurred that could involve major problems with plant systems. Local radio and television stations in the area will provide information and instructions. If you’re in an affected area, you will be notified by state and local officials about any actions you need to take.

4. **General Emergency.** The most serious of the four NRC classifications. Radioactive material could be released outside the plant site. State and local authorities will take action to protect the public. Sirens may be sounded and local radio and television stations will provide information and instructions. If you’re in an affected area, you will be notified by state and local officials about any actions you need to take.

Emergency notification systems

There are a variety of emergency notification systems that would alert residents near Plant Vogtle if an emergency should occur.

Vogtle Tone Alert Radios

Vogtle tone alert radios have been distributed to homes and businesses within 10 miles of the plant. A loud tone will sound and a short message will be broadcast directing residents what to do and advising them to listen to a local radio or television station for more details. Radios are tested each Wednesday.

Siren Systems

Sirens have been installed within the 10-mile Emergency Planning Zone (EPZ) around Plant Vogtle. These sirens alert residents to listen to a local radio or television station. The sirens have a sound different from emergency vehicles. They are tested frequently. They will sound briefly during Plant Vogtle’s annual emergency drill and during maintenance.

CodeRED Emergency Notification System

The CodeRED Emergency Notification System may be utilized to contact residents by phone in the event of an emergency. It is also available as an app on your smart phone. For additional information, contact your local Emergency Management Agency.
Public protective actions

If an emergency occurred at Plant Vogtle, state and county officials would be notified immediately. They, in turn, would determine the need for any protective measures for the public. The public in the vicinity of the plant would be told about an emergency immediately by a variety of emergency notification systems – by tone alert radios (in homes, businesses and institutions), or outdoor sirens, CodeRed, loudspeakers or emergency workers. In addition, emergency information would be broadcast over local radio and TV stations designated as alert stations in the Emergency Alert System.

Depending on the severity of the emergency, state and county authorities would advise the public what action, if any, to take for protection against radiation. The three actions health officials might recommend are called take shelter, go inside/stay inside and evacuate.

Take shelter means to protect oneself by going inside a building and keeping out as much outside air as possible. Taking shelter would generally be advised if there were small amounts of radiation in the air. The Emergency Alert System would be the major source of information and instruction to the public.

Go inside/stay inside means protecting yourself by going inside any type of building, home or business and locking all entry points. This action will keep you safe if there is a security event occurring at the plant. Radiation levels above EPA limits are not detected under this emergency action.

Evacuation may be ordered by government authorities during an emergency at the plant if they decide that the protection provided by taking shelter is insufficient. Citizens would be told to move to pre-designated reception centers outside the emergency area. Evacuation plans are part of the overall Plant Vogtle Emergency Plan. These evacuation plans have been thoroughly researched and include provisions for transporting, routing and housing the public; protecting property; and handling virtually every conceivable difficulty during an evacuation. Public officials have been specifically trained to carry out these plans.

Within 24 hours of an incident that requires emergency assistance for area residents – for example, when an evacuation has been ordered – an insurance pool supported by American Nuclear Insurers will establish a local claims office. Insurance personnel can provide emergency funds for out-of-pocket living expenses such as transportation, food, lodging, emergency medical treatment and lost wages.

In any emergency event at Plant Vogtle that requires protective action guidelines to be issued, the utility and state and county officials would work closely with the media to ensure media organizations have accurate information to disseminate to the local population around the plant. During an emergency, the media would have a key role in getting accurate information to the public in a timely manner.

For more information on emergency procedures, view the Emergency Information Calendar found at www.southerncompany.com/nuclearenergy/vogtle.aspx, or download directly by scanning the QR code below.
Nuclear physics

The fuel source for nuclear power plants is uranium. Unlike coal, gas and oil, uranium does not burn chemically. The heat needed to create steam in a nuclear power plant comes from the splitting of atoms, a process called fission.

Here’s how it works

Like most U.S. nuclear power plants, Plant Farley uses uranium enriched in Uranium-235 (U-235) as fuel. In the reactor, uranium atoms are bombarded by neutrons, which are smaller parts of an atom (sub-atomic particles). Fission may occur when a uranium or plutonium atom absorbs a neutron and the atom splits. In the process, the atom produces additional neutrons (an average of 2.5 each fission), which go on to split more U-235 and Pu-239 atoms, which create more neutrons, and so on. The result is a chain reaction.

An important by-product of nuclear fission is heat. When a uranium atom is split, it releases a large amount of energy in the form of heat, which is transferred to the coolant. The fission process also produces two or more isotopes called fission fragments. These radioisotopes also contribute energy to the coolant, but most of the energy generated comes directly from the fission process.

This process occurs in the reactor core where the fuel transfers its heat to water that is then circulated to the steam generator.

Think of it another way...

If you used a magnifying glass to magnify rays from the sun, the rays could get very hot. If you could do this in a pool of water, you’d eventually have a hot tub. And if you could keep this up indefinitely, pretty soon you’d have a sauna.

Heat release is the key objective in power production, regardless of the fuel. Interestingly, while fission heat production may be a 21st-century phenomenon, the principle of using thermal energy (heat) to boil water to make steam to turn a turbine to produce power has been around for centuries.

Controlling fission in a nuclear reactor

The purpose of a nuclear reactor design is to create a controlled, self-sustaining chain reaction. In other words, the reaction can be turned on and maintained at a specific level.
When a nuclear power plant and its fuel are new, a neutron source (Californium) is used to get the fission process started. Interestingly, everything about the reactor – the vessel itself, its assemblies and fuel – is designed in advance to produce the desired number of fissions necessary, but no more than the optimum.

Once the reactor has started, enough neutrons remain in the fuel to restart the fission process as needed – for example, after a refueling shutdown.

Control and moderation of the chain reaction are the functions of water and control rods. The water contains boron, a chemical similar in appearance to rock salt. Borated water helps control the fission process by absorbing excess neutrons. The control rods are used to absorb neutrons as needed to control the neutron chain reaction.

More about nuclear physics and fission

Nuclear power plants cannot explode like a nuclear weapon. Nuclear weapons are made of highly enriched (or concentrated) uranium or virtually pure plutonium. The type of fuel used in a nuclear reactor is incapable of producing the intense chain reaction of a nuclear weapon. It is physically impossible to detonate nuclear fuel that is used to produce electricity.

Natural uranium, as it is mined, is 99.3 percent U-238 and 0.7 percent U-235. Only U-235 is readily fissionable. However, since the concentration of U-235 is so low that it will not efficiently sustain a fission chain reaction, it must be enriched. Enrichment is a complicated physical concentration process performed at special plants. Fuel used in nuclear power generating plants is enriched to about 3 to 5 percent U-235. In contrast, weapons-grade uranium is enriched to approximately 95 percent or more. So even though they come from the same base – uranium – the two are completely different.

U-238 also plays an important role in power production. Neutrons are absorbed in U-238 and Pu-239 is created. In older fuel, a significant fraction of the core power is generated from plutonium fissions. Fission of U-238 also can occur, but it is not a significant contributor to the core power.

A small amount of uranium packs a lot of energy. In fact, a nuclear fuel pellet the size of a sewing thimble can produce approximately the same amount of energy as a ton of coal.
Nuclear power generation

Nuclear power plants generate electricity using the same engineering technology as conventional steam plants that burn fossil fuels (coal, oil, natural gas or other combustibles). The difference is the heat source used to make steam.

At fossil plants, a “boiler” is used to make steam, while at nuclear plants, reactors generate heat to create steam.

In all steam generating plants, the cycle is the same: the heat source generates steam, which turns turbines, which power the electric generator. The rotation of the generator produces electrical current, which is fed into a grid, which delivers the electricity to consumers.

Reactor controls and operation

The reactor as a heat source is a very simple machine. It has only one set of moving parts, and when in a steady state of operation, no moving parts at all. The moving parts are the control rods, which are slowly moved in and out of the reactor core (uranium fuel) to increase or decrease nuclear power. The heat that the reactor core produces is the by-product of a sustained fission reaction. Fission occurs when free-traveling neutrons strike the nuclei of other atoms, causing them to split, while also freeing more neutrons.

Control rods regulate the reactor power because they are made from neutron-absorbing material. If they are inserted inside the core, they absorb most free-traveling neutrons, thus prohibiting the neutrons from striking and splitting other nuclei. If all the control rods are fully inserted into the reactor core, the reactor shuts down altogether. When the control rods are withdrawn, more neutrons are free and more collisions occur, producing even more neutrons and the power level increases.

The element boron is also a neutron absorber, and varying its concentration in the cooling water adjusts the number of neutrons available to produce fissions, thus controlling the power level. Boron is used to fine tune reactor power or for shutting down the reactor during emergency shutdowns, prolonged unit outages or refueling.
By-products of operation

A reactor operating at any power level can be instantly shut down by rapidly inserting control rods into the core or by injecting boron.

However, even with reactor power at zero, the reactor core continues to emit heat. This decay heat must be removed or the temperature inside the reactor core could reach very high levels – high enough to melt the nuclear fuel rods and the nuclear fuel inside them. Because of the nuclear reactions, the reactor core becomes extremely radioactive, with additional isotopes created that give off heat by undergoing radioactive decay.

For this reason, it is extremely important that the reactor core be continuously cooled during plant operation or after shutdown. The following sections summarize Plant Vogtle emergency systems that ensure the reactor core is cooled and radioactive products are contained under all types of conditions.

Types of light water reactors

The term, light water reactor, came into being more than 50 years ago when reactors began using normal purified water for cooling, rather than heavy water, which is used in Canada’s Candu reactors.

There are two types of light water reactors, distinguished by the type of reactor cooling system they use. These are the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). A PWR can use a two-loop, three-loop or four-loop system. Plant Vogtle is a PWR with a four-loop system. The figure on page 17 shows a typical PWR generating cycle.

In a PWR such as Plant Vogtle, control rods enter the reactor from the top. Operators may insert the rods in a controlled, systematic manner. If there is a need to shut down the reactor quickly, all the rods may be manually or automatically inserted into the reactor core.

There are two water cooling systems: the primary and the secondary. The primary water coolant circulates across the fuel in the reactor core, where it reaches a temperature of about 620 degrees Fahrenheit. To keep this coolant from boiling, the primary system is kept at a pressure of about 2,235 pounds per square inch gauge (psig). This high-pressure/high-temperature primary coolant is pumped through tubes in four steam generators where the coolant transfers some of its heat to the secondary cooling system. The primary coolant, now at a lower temperature, is pumped back into the reactor and the cycle continues.
Since the primary and secondary cooling systems are isolated from each other, the radioactive water in the primary cooling system does not contaminate the non-radioactive water in the secondary cooling system.

Water in the secondary cooling system is under less pressure than in the primary cooling system, which allows it to boil, thereby creating steam. This steam passes into the high-pressure turbine where it turns the turbine blades, much like a windmill when wind hits its blades.

The steam leaves the high-pressure turbine and enters the moisture separator/reheater where it is "recharged." It then flows into the low-pressure turbines where it provides more power for rotation. Both the high-pressure and low-pressure turbines are on the same shaft, which is also attached to the generator whose rotation produces the electricity.

The recycled steam subsequently enters the condenser where it is cooled and converted back into liquid to continue the cycle. The condenser cools by circulating water from a natural draft cooling tower; water for the cooling tower is taken from the Savannah River. This circulating water never comes in actual contact with the steam. After its pass through the condenser, the water is about 23 degrees Fahrenheit warmer than ambient temperature. This excess heat is given up to the atmosphere through the cooling tower with a minimum of environmental impact.

Now called “condensate,” the secondary coolant water leaves the condenser and is pumped through the feedwater heaters back into the steam generators where the whole process continues. Before entering the feedwater heaters, however, the condensate passes through a full-flow demineralizer (or “condensate polishing system”) to remove any impurities that may have entered the system.

Accident prevention

One essential point about a light water reactor is that it cannot explode like a nuclear weapon. Nuclear weapons are made of highly enriched uranium or virtually pure plutonium. No nuclear explosion is possible with the low-enriched fuel used to produce electricity.

The core of a light water reactor contains a large amount of highly radioactive material at high temperature and pressure. The chief danger is a loss of cooling water, causing a build-up of heat that would damage or melt the fuel rods.

To prevent this, commercial nuclear power plants are designed with a strategy of defense-in-depth.

The first layer of designed features is essentially self-regulating. In general, the fission process slows as the coolant temperature rises.

Other passive systems include physical barriers that restrict the spread of contamination outside the primary systems. Barriers such as the fuel's zirconium alloy cladding, the thick reactor vessel and the thick concrete containment provide protection in case of an accident.

Following is a description of these physical barriers at Plant Vogtle that keep radioactive fission products from reaching the environment.

Active systems are designed to ensure continuous core cooling and safe shutdown of the plant.
Fuel cladding – Uranium fuel used at Plant Vogtle is in the form of a ceramic “pellet” which normally houses 99.99 percent of the radioactive fission products. These fuel pellets are stacked inside tubes. The tubes are arranged in fuel assemblies and are placed within the reactor vessel, comprising the core.

Reactor vessel – The reactor vessel is a barrel-like structure about 16 feet in diameter with carbon steel walls lined with stainless steel. It is located inside the lower part of the containment building. The reactor vessel with its attached pipes, reactor coolant pumps and the pressurizers comprise the primary coolant system boundary. This keeps any fission products, which may escape the cladding in the event of broken fuel tubes, from reaching the rest of the plant.

Containment – The containment building is constructed to prevent the inadvertent release of radioactivity to the environment under both normal operating conditions and the most severe of accident conditions. Therefore, all systems that potentially could release large amounts of radioactivity are located in the containment structure. At Plant Vogtle, the containment structure houses the reactor vessel and the reactor cooling system with its steam generators, reactor coolant pumps and pressurizer.

The containment building is made of concrete with thick walls. The concrete is post-tensioned and reinforced with a network of steel rods (rebar), each about the thickness of a human forearm. The structure is lined with thick steel and is designed to withstand extreme temperatures and pressures which might result from a serious accident. The containment is sealed and must be entered and exited through special air-lock chambers. Most penetrations such as pipes or conduits entering the containment walls have automatic valves that close at the first sign of trouble, isolating and sealing off the containment to prevent leakage. As a Category 1 Seismic structure, the containment building can withstand powerful earthquakes and high winds. It can survive tornado winds of 360 miles per hour, as well as the impact of tornado missiles such as utility poles or even something as massive as an automobile. In addition, a comprehensive study conducted by the Electric Power Research Institute concluded that the containment structures that house nuclear fuel are robust and would protect the fuel from impacts of large commercial aircraft.

Engineered safety systems

The function of the engineered safety systems is to contain, control, mitigate, and terminate accidents and to maintain safe radiation exposure levels below applicable federal limits and guidelines. Some of the safety-related systems defined as engineered safety systems for Plant Vogtle are:

Reactor protection system – The reactor protection system is designed
to shut down the reactor safely. The system continuously monitors important plant parameters. If a problem occurs and causes the reactor power, pressures, temperatures, coolant flow rates or other plant parameters to exceed prescribed limits, the reactor shuts down automatically by the immediate insertion of all control rods into the core. The reactor also can be shut down manually if the reactor operator determines that a potentially unsafe condition exists.

Emergency core cooling systems (ECCS) – The most immediate action to be taken after a loss of coolant accident is to replenish cooling water back into the reactor and to assure that the core remains under water. The function of the ECCS is to provide the reactor with emergency cooling water after normal cooling water has been lost.

There are two emergency core cooling systems, each designed to be completely redundant. Their operation is initiated either manually by an operator or automatically when the control systems in the plant detect an accident condition.

Both the high pressure injection and low pressure injection systems can inject water for long periods, pumping water supplied either from the refueling water storage tank or through recirculation from the containment sump.

Auxiliary feedwater system – The auxiliary feedwater system (AFW) serves a dual purpose. During normal plant startup or hot standby, it provides the secondary side of the steam generators with condensate. As mentioned before, the condensate picks up the heat from the primary coolant, boils and becomes the main steam for the turbine. This lowers the heat of the primary coolant, while providing steam for plant-related operations. During accident conditions, the AFW receives heat from the primary coolant. For example, if the plant were to lose all electric power, the AFW – using pumps driven by steam turbines (not requiring electricity) – could cool down the primary side and maintain the plant in a safe shutdown condition until power is restored.

Emergency power – During normal operations and when the plant is shut down, components that could be used in emergency situations are powered with electricity from the off-site power grid.

Plant Vogtle units 1 and 2 have two emergency diesel generators each. Either of these generators is designed to supply the power needed for safe operation of the plant’s emergency systems if off-site power is not available.

Additionally, most of the safety-related instrumentation needed for safe shutdown of the plant can be operated by DC batteries that are constantly kept charged and ready for service if all other power sources should fail.

Finally, even without any electrical power available, the plant can be shut down safely and cooled by using the natural circulation of the primary system while manually venting steam from the secondary side of the steam generator. Water for the steam generator is provided using the steam-driven auxiliary feed pump.

Containment isolation system – The purpose of this system is to isolate
and close all openings to the containment if a high radiation situation exists in the containment building. Automatic signals are sent to appropriate valves and dampers to close, thus isolating all containment penetrations – except for those needed for the operation of the emergency core cooling systems.

Habitability systems – The control room heating, ventilation and air conditioning (HVAC) system protects control room personnel from accident conditions. The atmosphere inside the control room can be isolated from the rest of the plant and the outside environment to keep out radiation, smoke, toxic substances and other harmful airborne contaminants.

Combustible gas control system – The combustible gas control system monitors the atmosphere inside containment.

In summary, Plant Vogtle has a number of redundant safety systems to prevent an emergency at the plant and to restore the plant to safe conditions.
Used nuclear fuel

Used nuclear fuel is a solid material that is safely stored at nuclear power plant sites, either in steel-lined, concrete pools filled with water or in steel or steel-reinforced concrete containers with steel inner canisters. The first storage method is referred to as the spent fuel pool. The second storage method is called dry cask storage.

On-site storage of used fuel is well protected by a combination of sturdy plant construction, state-of-the-art surveillance and detection equipment, and armed, well-trained paramilitary security forces.

Nuclear plants were designed to store at least a decade’s worth of used fuel. And with dry cask storage, used fuel can be safely stored much longer. The U.S. Nuclear Regulatory Commission (NRC) has determined that used fuel can be safely stored at plant sites for at least 30 years beyond the licensed operating life of the plant. While used nuclear fuel can be safely stored on-site, Southern Company and the industry maintain that a permanent underground repository is the best long-term solution. Let’s examine these options.

Spent fuel pool

After enough U-235 has been used up in the fission process, the fuel assemblies need to be removed and replaced with new fuel assemblies. However, the used fuel is highly radioactive. At most plants, used fuel is stored in large, steel-lined, concrete pools filled with water. These pools are known as spent fuel pools. Both water and concrete are excellent radiation shields. In these spent fuel pools, the water acts as an absorber, which prevents radiation from escaping from the pool. The water also keeps the fuel cool while the fuel decays, or becomes less radioactive over time. The water itself never leaves the inside of the plant’s concrete auxiliary building.

Spent fuel pools are very effective for storing used fuel safely. Uranium, in the form of small pellets, is the fuel used to generate the power to operate nuclear power plants. These fuel pellets are about the size of the tip of your finger. Fuel pellets are placed in long metal fuel rods while being used in the reactor. Once this fuel is used or partially used, it must be moved to an area called the spent fuel pool to cool.

To prevent spent fuel pools from becoming too crowded, used fuel assemblies eventually must be removed from the pool. Commercial nuclear power plants in the United States are required by law to contract with the federal government for the permanent disposal of used nuclear fuel. Southern Company nuclear plants have paid almost a billion dollars into the
Nuclear Waste Fund, but the government has failed to live up to its contractual obligation to dispose of used fuel.

Dry cask storage

The government's delay in providing a permanent repository for used nuclear fuel means that nuclear plants must store more used fuel than expected and store it for longer than originally intended. Since 1986, dozens of U.S. nuclear plants have supplemented their storage capacity by building above-ground dry storage facilities. Other countries also have safely and successfully stored used fuel above ground since the mid-1970s.

Southern Nuclear uses dry cask storage at each of our plant sites.

Dry storage containers are cylindrical containers constructed of steel or steel-reinforced concrete and lead, which serve as proven, effective radiation shields. These casks effectively shield the radiation as the used fuel continues its cooling process. Once loaded with used fuel assemblies, the containers are stored horizontally in a concrete vault, or they stand upright on a thick concrete pad.

Each dry cask storage container design must be approved by the NRC. The agency requires that dry storage containers be constantly monitored and relicensed every 20 years. The containers are designed and tested to prevent the release of radioactivity under the most extreme conditions – earthquakes, tornadoes, hurricanes, floods and sabotage – and they are naturally cooled and ventilated.

While dry cask storage is very safe for the public and the environment, it is expensive. Dry storage containers range from $500,000 to more than $1 million each. And remember, utility customers have already contributed billions of dollars into the federally mandated Nuclear Waste Fund for a national permanent repository.
Background radiation

Radiation is a natural part of our environment. It’s in the air we breathe, in the food we eat, in our homes and even in our bodies. The levels of background radiation vary greatly from one location to another. For example, the background level in Denver, Colorado, is almost twice that in the Plant Farley area.

Man-made radiation

People also are exposed to sources of man-made radiation, such as X-ray machines, radioactive materials used in nuclear medicine and radioactive materials released in nuclear power production. Radiation from these sources is no different from natural background radiation we receive daily.

Measurement

Radiation is measured in units of millirem. In the United States, the average person receives from 250 to 300 millirem a year from natural background radiation. That same person also receives about 90 millirem a year from medical care. The average person receives less than 1 millirem a year from living next to a nuclear plant. Sources of radiation are listed below.

Radiation effects

How radiation affects us depends upon the kinds of particles or rays, the amount and duration of exposure, how much of the body is exposed, how much radioactive material stays in the body, and how old we are.

Small increases in radiation exposure will not harm you. That is why people don't worry about the change in background radiation exposure when they move from one city to another. Even so, nuclear power plants operate to keep radiation exposure to the public as low as possible.

Large amounts of radiation — more than a hundred thousand millirem — could possibly harm you. The chances are very small that an accident at Plant Farley would put out a significant amount of radiation. But if such an accident should happen, emergency plans are designed to help residents in the local community avoid receiving dangerous amounts of radiation.

This chart shows that the nuclear power industry is only a small contributor to your average radiation exposure.
Withstanding seismic activity

U.S. nuclear power plants are among the most robust, secure facilities ever built. They have significantly higher design and performance requirements than other industrial stations, and they are built to withstand much larger earthquakes than any other facility.

Our company was already working with the NRC and the rest of the nuclear industry to evaluate seismic risks and hazards using new modern methods well before the 2011 event at the Japanese Fukushima Daiichi nuclear plant.

Although our plants are located in regions with low seismic activity, Southern Nuclear has regularly assessed our plants against the current state of seismic knowledge. These regular assessments have resulted in enhanced margins of safety and increased reliability.

As the state of knowledge of seismic events progresses, so do the seismic models and the tools available to assess the impact on nuclear power plant performance. We continue to reaffirm that our nuclear energy facilities are built robustly enough to safely shutdown and withstand seismic events.

Protecting critical systems

Southern Nuclear considers cyber security to be a serious issue and has allocated significant resources to develop and implement a comprehensive program to protect its critical systems from cyber attacks.

The SNC cyber security plan provides a means to achieve high assurance that digital computer and communication systems and networks associated with critical functions, including safety, security and emergency preparedness, are effectively protected against cyber attacks.

The CSP has established a defensive in depth model that places our most protected equipment behind boundary isolation devices. Our plant safety and control systems are not connected to business networks or the Internet. Comprehensive controls over the use portable media and equipment are in place.

Southern Nuclear participates with the industry and government agencies to be aware of and assess its readiness for emerging cyber threats.
Plant Vogtle units 3&4

To meet the rising demand for electricity as the state of Georgia adds more than 4 million new residents by 2030, Georgia Power and Southern Nuclear are building two additional nuclear energy facilities at Plant Vogtle near Waynesboro, Ga., the first new nuclear generation to be built in the United States in more than 30 years.

Units 3&4 are scheduled to begin commercial operation in 2019 and 2020, respectively. Once complete, the new Westinghouse AP1000 reactors will produce enough energy to power 500,000 Georgia homes and businesses.

Final regulatory approval for the project was received in February 2012 when the Nuclear Regulatory Commission issued the Construction and Operating Licenses for units 3&4.

The new units are incorporating safety and technology enhancements that improve on the already stellar record of the company’s operating facilities. At the facility site, significant work has been done on turbine islands, cooling towers and nuclear islands. Major components began arriving at the site in late 2012.

The construction of Vogtle 3&4 is currently the largest job-producing project in Georgia, employing approximately 5,000 people during peak construction. It will create 800 permanent jobs when the facilities begin operating.

The co-owners of Vogtle units 1&2 will maintain their current ownership shares in Vogtle 3&4: Oglethorpe Power, 30 percent; Municipal Electric Authority of Georgia (MEAG), 22.7 percent; and Dalton Utilities, 1.6 percent. Georgia Power’s proportionate share of the estimated in-service cost of the two units, based on its current ownership interest of 45.7 percent, is certified at $6.1 billion.

The Vogtle 3&4 project provides at least $4 billion more value to customers than the next best available technology, according to Georgia Public Service Commission staff. In addition, the facility will generate clean, safe and reliable energy that customers deserve and expect.

Georgia Power’s uncompromising focus is on safety and quality, and we will incorporate all safety and technology advancements that improve the facility and make it the best value for the citizens of Georgia.
Words to know

Chain Reaction — a sequence of reactions that cause themselves to repeat.

Cold Shutdown — when the cooling-water temperature in the reactor is below the boiling point and the pressure is reduced to atmospheric pressure.

Coolant — a fluid, usually water, used to cool a nuclear reactor and transfer heat energy.

Containment — the steel and concrete structure along with the various components that surround and isolate the reactor.

Contamination — the presence of radioactive material in a place where it is not desired.

Control Rods — movable rods used to slow down or stop a nuclear chain reaction by absorbing neutrons.

Core — the central part of a nuclear reactor that contains the fuel assemblies.

Curie — the basic unit used to describe the strength of radioactivity in a sample of material.

Dosimeter — a device that can be worn and used to measure the radiation a person receives over a period of time.

Emergency Core Cooling System — an emergency system designed to keep the reactor core cool if normal cooling fails.

Emergency Planning Zone (EPZ) — the 10-mile diameter around the plant. This area is required to have special emergency plans.

Fission — the splitting or breaking apart of atoms into two or more new atoms. The process releases energy and produces heat.

Fuel Assemblies — a group of fuel rods assembled into a bundle.

Fuel Pellets — thimble-sized uranium oxide pellets. A reactor core may contain up to 10 million pellets.

Fuel Rods — long, hollow tubes of zirconium metal that contain stacks of fuel pellets.

Half-life — the length of time it takes for a radioactive substance to lose one-half of its radioactivity.

Millirem — a unit used to measure radiation dose.

Nuclear Regulatory Commission (NRC) — the U.S. government agency that regulates the nuclear power industry.

Plume — something such as smoke, steam or water that rises into the air in a tall, thin shape.

Radiation — energy released in the form of tiny particles or electromagnetic waves.
Reactor Core — the central portion of a nuclear reactor containing nuclear fuel, water and the control mechanism as well as the supporting structure.

Reactor Trip (SCRAM) — refers to the insertion of control rods in the fuel core of the reactor, stopping the fission process.

Reactor Vessel — the thick steel vessel that contains the fuel, control rods, and coolant.

REM — roentgen equivalent man. Common unit used for measuring human radiation doses, usually in millirem (1,000 millirem = 1 rem)

Shielding — any material, such as lead or concrete, used around a nuclear reactor to protect workers and equipment.

Spent Fuel — used nuclear fuel awaiting disposal.

Uranium — a radioactive element found in natural ores. Uranium is the basic fuel of a nuclear reactor.